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Abstract
Large Language Models (LLMs) can memorize
sensitive information from their training data, rais-
ing privacy and safety concerns. LLM unlearn-
ing techniques address this by removing specific
knowledge from models without full retraining.
This work surveys state-of-the-art methods, in-
cluding in-context, gradient-based, preference-
optimization-based, and logit-difference-based ap-
proaches. We discuss metrics and benchmarks for
evaluating unlearning, highlight limitations such
as the forget quality / model utility trade-off and
vulnerabilities to attacks, and argue for localized
unlearning as a promising direction for minimiz-
ing utility degradation.

1. Introduction
Large Language Models (LLMs) are trained on massive
datasets that can contain private or other sensitive informa-
tion. Recent research has shown that LLMs can exactly
memorize such data: Carlini et al. (2021) demonstrate that
it is possible to extract training data, such as names, email
addresses, and UUIDs, solely relying on black-box access
to the model. While Huang et al. (2022) point out some
practical limitations in exploiting memorized data, they also
note that larger models have a higher capacity for mem-
orizing sensitive information. Furthermore, Carlini et al.
(2023) quantify this relationship and find a log-linear rela-
tionship between model size and memorization rate. This is
particularly relevant given the ongoing trend of scaling up
models.

Memorization of training data raises concerns for user pri-
vacy, creates challenges for GDPR compliance, especially
the “right to be forgotten”, and poses risks of misuse, such
as aiding harmful applications. Consequently, there is a
need to remove specific knowledge from language models.
However, retraining these models from scratch to elimi-
nate pieces of information is often not feasible due to the
high computational cost. This motivates the development
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Figure 1. LLM unlearning process: Knowledge in the forget set
(e.g., sensitive information, marked in red) is removed, while
information in the retain set (e.g., general facts, marked in green)
is preserved.

of techniques for LLM unlearning, where an existing model
is modified to forget particular data points while preserv-
ing its functionality. Figure 1 illustrates this process and
shows how forget set knowledge is removed while retain set
knowledge is preserved.

This work begins with a definition of the unlearning prob-
lem, followed by a comprehensive survey of state-of-the-art
methods for LLM unlearning. It then presents an overview
of the metrics and benchmarks used to evaluate unlearning,
as well as adversarial attacks designed to recover “forgotten”
information. Finally, we highlight the limitations of exist-
ing approaches and argue for the need for more targeted
unlearning.

2. Problem Definition
The goal of LLM unlearning is to remove the influence
of data points on which a language model was originally
trained. More formally, given a language model πθ trained
on a dataset D, and a subset Df ⊂ D that should be forgot-
ten, the task is to obtain a model πθ′ that behaves as if it had
been trained only on D \Df .

Often, unlearning techniques further rely on a retain set
Dr ⊂ D \Df , which is used to preserve the model’s per-
formance on unrelated tasks, without requiring access to the
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full dataset D.

For many unlearning methods, the unlearning objec-
tive can then be expressed as an optimization problem:
minθ Es∼Df

[Lforget(πθ, s)] + λ · Es∼Dr
[Lretain(πθ, s)] ,

where the loss Lforget aims to reduce the model’s perfor-
mance on the forget set Df , while Lretain aims to maintain
the model’s performance on the retain set Dr and s = (x, y)
is a data point from the dataset consisting of an input x and
an output y. The hyperparameter λ controls the trade-off
between forgetting and retaining information.

Additionally, it is useful to make a distinction between black-
box and white-box settings. Black-box settings only allow
observation of model outputs, whereas white-box settings
provide access to model weights. The latter poses greater
challenges for unlearning, as attackers can analyze internal
representations to potentially recover forgotten information.

3. State-of-the-Art Unlearning Methods
3.1. In-Context Unlearning

In-context unlearning (Thaker et al., 2024; Takashiro et al.,
2024) modifies the model’s behavior at the prompt or out-
put level without altering weights. This makes in-context
unlearning suitable in the black-box setting. It achieves
good forgetting while preserving utility but is vulnerable to
jailbreak attacks and insufficient if the model weights are
accessible.

3.2. Gradient-Ascent-Based Methods

Gradient-based methods directly adjust model weights
to reduce performance on the forget set. The simplest
approach is using gradient ascent (Jang et al., 2022)
to reduce the model’s performance on the forget set:
Lforget = log πθ(y | x).

However, this approach significantly degrades model utility.
Therefore, gradient difference methods (Maini et al., 2024)
incorporate an objective to maintain model performance
on the retain set. This can be done by maximizing the
log-likelihood of the retain set: Lretain = − log πθ(y | x).

Other variants (Yao et al., 2024; Maini et al., 2024) in-
corporate a KL divergence term to preserve performance:
LKL = E(x,y)∼Dr

[KL(πref(y | x)∥πθ(y | x))] , where πref
is the model before unlearning.

While a retain loss helps maintain model utility, utility drops
persist, especially for larger forget sets (Maini et al., 2024).

3.3. Preference-Optimization-Based Methods

Preference-optimization-based approaches adapt alignment
techniques like Direct Preference Optimization (DPO)

(Rafailov et al., 2024) for unlearning. DPO uses two re-
sponses to a prompt x and a preference y1 ≻ y2 and is used
to align language models with human preferences. Negative
Preference Optimization (NPO) (Zhang et al., 2024a) adapts
this for unlearning by only using the negative response:

LNPO,β =
2

β
E(x,y)∼Df

[
log

(
1 +

(
πθ(y | x)
πref(y | x)

)β
)]

.

Here β is an inverse temperature parameter that modu-
lates the trade-off between unlearning speed and preserving
model utility.

This approach offers more stability and avoids catastrophic
collapse (a failure mode where unlearning drastically im-
pairs overall model performance) compared to gradient-
ascent-based methods. This is because gradient updates for
data points that are already unlearned diminish. While NPO
shows improvement over gradient-ascent-based methods, it
still trades off forget quality against model utility for larger
forget sets.

Fan et al. (2024) introduce SimNPO, an adaptation of NPO
that does not require a reference model and instead uses a
length-normalized loss during unlearning. This improves
NPO by allocating unlearning effort based on data diffi-
culty rather than the difference between current and refer-
ence models. Additionally, it better preserves model utility
through less aggressive updates in early unlearning stages.
Another variant, AltPO (Mekala et al., 2024), uses DPO
with contextually relevant alternate answers for unlearning.

3.4. Logit-Difference-Based Methods

Logit-difference-based methods (Eldan & Russinovich,
2023; Ji et al., 2024; Huang et al., 2024) first train a re-
inforced model to perform better on the forget set, meaning
the model becomes more likely to produce harmful outputs.
Then they use the logit differences between the reinforced
and original model for unlearning.

Eldan & Russinovich (2023) aim to remove knowledge
about Harry Potter by fine-tuning the model on generic
completions. For example, the baseline completion for
the sentence “Harry Potter’s two best friends are” would
be “Ron and Hermione”. A generic completion for the
same sentence would be two unrelated names. To obtain
the generic completions, the authors use the logit differ-
ence between the reinforced model and the original model:
zgeneric = zoriginal − αReLU(zreinforced − zoriginal), where z
are the logits of the model and α is a hyperparameter. The
final generic completion is then obtained by selecting the
highest probability tokens from the generic logits zgeneric.

Additionally, the authors use a second approach to generate
generic completions. They replace the anchor terms (e.g.,
“Harry Potter”) in the prompt with generic terms (e.g., a
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generic name) to obtain generic completions. Then, fine-
tuning is done with the original anchors but generic com-
pletions to delete the link between anchor and forgotten
information.

Ji et al. (2024); Huang et al. (2024) remove forgotten
information by directly using the logit differences be-
tween the original and the reinforced model to steer the
final prediction. Liu et al. (2024) also rely on a rein-
forced model, but instead of using logit differences, they
use the difference in parameters for updating the model:
θunlearned = θorig − (θreinforced − θorig).

3.5. Second-Order Optimization for Unlearning

Second-Order UnLearning (SOUL) (Jia et al., 2024) uses
second-order optimization for more precise unlearning. It
iteratively updates model parameters using an approxima-
tion of the Hessian’s diagonal. It is loss-agnostic and can
therefore be used to improve the performance of existing
methods.

4. Evaluating Unlearning
To evaluate the effectiveness of unlearning, it is necessary
to assess the forget quality (how reliably the model forgets
specific information) and model utility (how well the model
retains its overall performance after unlearning). Several
benchmarks and metrics have been developed for this pur-
pose:

The “Who’s Harry Potter?” benchmark (Eldan & Russi-
novich, 2023) evaluates model utility on standard NLP
benchmarks and forget quality using a familiarity score,
which assesses if Harry Potter-specific information appears
in model outputs. However, this requires a manual review of
answers, which is less scalable and could introduce subjec-
tivity. In contrast, the Weapons of Mass Destruction Proxy
(WMDP) benchmark (Li et al., 2024b) measures accuracy
on biosecurity, cybersecurity, and chemical security using
multiple-choice questions. While this format is automatable,
it does not evaluate if sensitive information is leaked in more
complex queries.

The Task of Fictitious Unlearning (TOFU) benchmark
(Maini et al., 2024) tests the model’s ability to forget syn-
thetic author profiles the model has been fine-tuned on. Us-
ing synthetic data has the advantage that the optimal un-
learned model is available (the model before fine-tuning,
which has never been trained on the forget set). This en-
ables more comprehensive evaluation metrics: To assess
forget quality, this benchmark compares the Truth Ratio
distributions of the retrained (pre-finetuning) and unlearned
models on the forget set using the Kolmogorov-Smirnov test
(KS test). A high p-value produced by the KS test means
distributions of retrained model and unlearned model are

similar (good forgetting). The benchmark’s limitations are
its narrow scope, the reliance on fine-tuning for including
the synthetic data in the model, and the lack of adversarial
prompt testing.

The Real-World Knowledge Unlearning (RWKU) bench-
mark (Jin et al., 2024) evaluates the model’s ability to for-
get information about real-world celebrities. It includes
evaluations for robustness to membership inference attacks
(determining if a specific data point was used to train the
model) and adversarial attack probes (such as prefix injec-
tion, cross-lingual prompts, etc.).

Scholten et al. (2024) argue that deterministic evaluation
through greedy decoding is insufficient and propose evalu-
ating the entire output distribution using Monte Carlo sam-
pling. This probabilistic perspective offers guarantees for
the information leakage likelihood.

5. Adversarial Attacks
LLM unlearning aims to completely remove sensitive in-
formation. While models may appear to forget data by not
producing it in standard outputs, adversarial attacks can
often recover this information.

One category of attacks, black-box attacks, relies on prompt-
ing strategies to elicit unlearned information. Black-box
attacks do not require access to the model’s weights. These
approaches range from paraphrased questions (Patil et al.,
2023), to multi-hop questions that test the model’s ability to
integrate related pieces of knowledge (Zhong et al., 2024),
and multi-turn human jailbreak attempts (Li et al., 2024a).

Other attacks target the model’s internal representations.
The logit lens attack (Patil et al., 2023) takes intermediate
representations (hidden states) produced by the model at
various layers and projects them onto the vocabulary space
to reveal traces of deleted information. The authors propose
two approaches to finding unlearned information in vocabu-
lary space: The head projection attack takes the top-k most
probable tokens from each intermediate layer. An alternative
approach is the probability delta attack, which is based on
the largest probability changes between consecutive layers.

Embedding space attacks (Schwinn et al., 2023; 2024) ma-
nipulate continuous embeddings of input tokens to maxi-
mize the likelihood of harmful output. These attacks can be
targeted at a specific input or designed as a universal attack
applicable to a wide range of inputs.

Anonymized activation steering (Seyitoğlu et al., 2024) cre-
ates anonymized versions of questions about unlearned infor-
mation. The difference in internal representations between
original and anonymized questions forms a steering vector.
This is added in the generation of the first token, pushing
the model to generate unlearned information.
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Even relatively straightforward techniques can reveal forgot-
ten data. Zhang et al. (2024b) demonstrated that applying
quantization after unlearning is sufficient to recover some
of the unlearned information. Similarly, retraining can also
lead to the recovery of forgotten knowledge. Hu et al. (2024)
showed that reintroducing the model to subsets of the forget
set or publicly available data, such as Wikipedia, can “jog”
the memory and restore sensitive knowledge. Deeb & Roger
(2024) extend this idea and show that even retraining on
unrelated facts can recover unlearned information.

To counter these attacks, Sheshadri et al. (2024) propose
latent adversarial training. This method perturbs latent ac-
tivations by minimizing an adversarial loss (which makes
harmful outputs more likely) and then trains the model to
minimize its loss under these perturbations.

6. Limitations of State-of-the-Art Methods
State-of-the-art unlearning methods face several key limita-
tions. First, there is a clear tradeoff between model utility
and forget quality, with effective unlearning often degrad-
ing overall performance, especially for large forget sets.
For example, Maini et al. (2024) demonstrate this on the
TOFU benchmark and find that all the tested methods (gra-
dient ascent, gradient difference, a KL-minimization-based
method, and a preference-optimization-based method) lead
to a significant drop in model utility.

Furthermore, the effectiveness of sometimes even simplistic
adversarial attacks that can recover unlearned information
suggest that unlearning is superficial. The state-of-the-art
methods do not remove the information from the model’s
parameters completely, but instead only make it less likely
to be retrieved.

Finally, Shumailov et al. (2024) highlight that unlearning
is not sufficient for content regulation. Even after success-
ful unlearning, LLMs can reacquire forgotten knowledge
through in-context learning, potentially enabling harmful
applications.

7. Localized Unlearning
The trade-off between forget quality and model utility sug-
gests a need for more targeted unlearning methods. A
promising direction is techniques that selectively modify
only the subset of model parameters directly related to the
information being unlearned.

Advances in mechanistic interpretability suggest that the in-
ternal mechanisms of LLMs can be partly understood: Geva
et al. (2021) show that feed-forward layers in transformers
operate much like key-value memory stores, where keys
are associated with interpretable input patterns. Building
upon this, Meng et al. (2023) introduce Rank-One Model

Editing (ROME), a method that uses this key-value struc-
ture to directly modify factual associations stored within
feed-forward layers. This method relies on causal tracing
to identify important neuron activations based on their ef-
fect on the model’s output. It then uses a rank-one weight
update to edit the corresponding memory. While originally
designed for model editing, this method can be adapted for
unlearning.

Furthermore, Templeton et al. (2024) show that sparse au-
toencoder can be used to identify interpretable features in
the model’s hidden states. This could be particularly useful
for unlearning broad topics like “Harry Potter” or “virol-
ogy.” These insights are further explored by Farrell et al.
(2024), who use sparse autoencoders to locate and clamp
selected features to a negative value for unlearning. While
this method does not achieve state-of-the-art performance, it
offers a promising direction for more localized unlearning.

8. Future Directions
Future research should focus on overcoming the limitations
of current unlearning methods, in particular the degradation
of model utility, and the vulnerability to adversarial attacks.
To address this, insights from mechanistic interpretability
(see Section 7) could offer one path to more localized un-
learning.

Another potential solution to better isolate the impact of
the forget data points could be a larger retain set that bet-
ter represents the original training data. Research should
explore whether scaling retain sets or generating synthetic
data can better preserve general knowledge while effectively
removing specific information.

Finally, methods for performing and evaluating sequential
unlearning (unlearning multiple pieces of information one
after another) remain underexplored and are needed for
many real-world applications.

9. Conclusion
This survey has reviewed state-of-the-art LLM unlearning
techniques, including in-context, gradient-based, preference
optimization, and logit difference methods, as well as new
approaches based on localized unlearning.

For current methods, large forget sets often degrade model
utility to achieve effective forgetting. Moreover, adversarial
attacks demonstrate that unlearning is often superficial and
leaves models vulnerable to information reconstruction.

Localized techniques like ROME and sparse autoencoders
show promise by targeting specific parts of the model rel-
evant for unlearning. Future work should expand these
methods and explore solutions for sequential unlearning.
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